refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 198 results
Sort by

Filters

Technology

Platform

accession-icon GSE11393
Monocyte gene expression profiling in familial combined hyperlipidemia and its modification by atorvastatin treatment
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Introduction: The genetic origin of familial combined hyperlipidemia (FCH) is not well understood. We used microarray profiling of peripheral blood monocytes to search novel genes and pathways involved in FCH. Methods: Fasting plasma for determination of lipid profiles, inflammatory molecules, and adipokines was obtained and peripheral blood monocytes were isolated from male FCH patients basally and after 4 weeks of atorvastatin treatment. Sex-, age- and adiposity-matched controls were also studied. Gene expression profile was analyzed using Affymetrix Human Genome U133A 2.0 GeneChip arrays. Results: Analysis of gene expression by cDNA microarrays showed that 82 genes were differentially expressed in FCH monocytes compared to controls. Atorvastatin treatment modified the expression of 87 genes. Changes in the expression of some genes, confirmed by real time RT-PCR, (CD36, leucine-rich repeats and immunoglobulin-like domains-1, tissue factor pathway inhibitor 2, myeloid cell nuclear differentiation antigen tumor necrosis factor receptor superfamily, member 25 and CD96) may be related to a proinflammatory environment in FCH monocytes, which is partially reversed by atorvastatin. Higher plasma levels of triglycerides and free fatty acids and lower levels of adiponectin in FCH patients could also trigger changes in gene expression that atorvastatin cannot modify. Conclusions: Our results demonstrate clear differences in gene expression in FCH monocytes compared with those of matched healthy controls, some of which are influenced by atorvastatin treatment.

Publication Title

Monocyte gene-expression profile in men with familial combined hyperlipidemia and its modification by atorvastatin treatment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61835
Gene expression by cyotosolic DNA stimulation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

STING molecule has been reported to be important adaptor molecule for cytosolic DNA sensing. We investigated gene expression by cytosolic DNA stimulation using bone marrow derived dendritic cells. We comparared gene expression profile between WT and STING knock out BMDCs after cytosolic DNA stimulation.

Publication Title

STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP171162
Single-cell RNA-seq of murine thymic Treg cell progenitors and mature Treg cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We use single-cell RNA-seq to determine distinct selection phenotypes of 2 rare thymic Treg cell progenitors as well as mature thymic Treg cells Overall design: A single cell suspension was generated from murine thymus then magnetically depleted for CD8/Ter119 before sorting CD25+Foxp3-, CD25-Foxp3lo and CD25+Foxp3+ cells from CD4+CD73- thymocytes on a BD Aria II. The 10x Genomic platform…

Publication Title

Thymic regulatory T cells arise via two distinct developmental programs.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
accession-icon SRP106454
Parental exposure to gamma radiation causes progressively altered transcriptomes that are linked to adverse effects in zebrafish offspring
  • organism-icon Danio rerio
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq4000

Description

In zebrafish, parental exposure to ionizing radiation has been associated with effects in offspring, such as increased DNA damage and reactive oxygen species. Here, we assessed short (one month) and long term effects (one year) on gene expression in embryonic offspring (5.5 hours post fertilization) from zebrafish exposed during gametogenesis to gamma radiation (8.7 or 53 mGy/h for 27 days, total dose 5.2 or 31 Gy). One month after exposure, a global change in gene expression was observed in offspring from the 53 mGy/h group, followed by embryonic death at late gastrula, whereas offspring from the 8.7 mGy/h group was unaffected. One year after exposure, embryos from the 8.7 mGy/h group exhibited 2455(61.8% downregulated) differentially expressed genes. Overlaps in differentially expressed genes and enriched biological pathways were evident between the 53 mGy/h group one month and 8.7 mGy/h one year after exposure, which could be linked to effects in adults and offspring, such as DNA damage and lipid peroxidation. Interestingly, pathways between the two groups were oppositely regulated. Our results indicate latent effects following ionizing radiation exposure in parents that can be transmitted to offspring and warrants monitoring effects over subsequent generations. Overall design: One month after exposure, mRNA from F1 5.5 hpf embryos from parents exposed to 8.7 and 53 mGy/h gamma radiation during gametogenesis was sequenced on the Illumina 4000 platform with three replicas per treatment. One year after exposure, mRNA from F1 embryos from the same parents exposed to 8.7 mGy/h was sequenced with three biological replicates. In both cases, F1 embryos from non-exposed parents were used as control and mRNA sequenced in triplicates, taken at the same time points as the exposed samples.

Publication Title

Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE108956
Expression data from PDGF-B induced murine gliomas at different stages and after transplantation
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE108955
Expression data from PDGF-B induced murine gliomas transplanted in NOD/SCID mice
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The different phases of tumor immunoediting in vivo were dissected thanks to a murine model of glioma induced by PDGF-B overexpression. We show that low-grade gliomas are highly immunostimulatory and that the adaptive immune system prevents the development of secondary tumor in syngeneic mice. During tumor progression, glioma cells downregulate immunostimulatory genes and the immune infiltrate becomes pro-tumorigenic. We showed that glioma cells are able to progress towards a high-grade phenotype even in immunodeficient mice, albeit more slowly and this progression invariably requires a downregulation of immunostimulatory genes.

Publication Title

Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE108954
Expression data from PDGF-B induced murine gliomas at different progression stages
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The different phases of tumor immunoediting in vivo were dissected thanks to a murine model of glioma induced by PDGF-B overexpression. We show that low-grade gliomas are highly immunostimulatory and that the adaptive immune system prevents the development of secondary tumor in syngeneic mice. During tumor progression, glioma cells downregulate immunostimulatory genes and the immune infiltrate becomes pro-tumorigenic.

Publication Title

Progression from low- to high-grade in a glioblastoma model reveals the pivotal role of immunoediting.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41106
Expression data after irradiating mMSCs
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41083
Expression data after irradiating mMSCs for 2 hours with broadband terahertz source
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41084
Expression data after irradiating mMSCs for 12 hours with broadband terahertz source
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

Publication Title

Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact