refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 75 results
Sort by

Filters

Technology

Platform

accession-icon GSE6388
Neocortical and hippocampal gene expression in kainate- and nicotine-injected juvenile mice
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

To examine irreversible changes in the developing brain following seizures, juvenile inbred mice were intraperitoneally injected with kainate and nicotine.

Publication Title

Increased expression of the lysosomal protease cathepsin S in hippocampal microglia following kainate-induced seizures.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69601
Expression data from patients of idiopathic portal hypertension
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Idiopathic portal hypertension (IPH) is characterized by portal hypertension due to obstruction or stenosis of the intrahepatic peripheral portal branches. Researchers have suggested that IPH may be attributed to intrahepatic peripheral portal vein thrombosis, splenic factors, abnormal autoimmunity, and related factors, however, the etiology of IPH remains unclear.

Publication Title

Comprehensive Screening of Gene Function and Networks by DNA Microarray Analysis in Japanese Patients with Idiopathic Portal Hypertension.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE7191
Altered gene expression in the neocortices and hippocampi of the adult S1P2-deficient and S1P3-deficient mice
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Altered gene expression in the sphingosine 1-phosphate receptor 2 (S1P2)-deficient or sphingosine 1-phosphate receptor 3 (S1P3)-deficient brain.

Publication Title

Frequent spontaneous seizures followed by spatial working memory/anxiety deficits in mice lacking sphingosine 1-phosphate receptor 2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66132
Gene expression profiles in white adipose tissues of lysophosphatidic acid receptor 4-KO mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Gα12/13-coupled receptor LPA4 limits proper adipose tissue expansion and remodeling in diet-induced obesity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE66131
Gene expression profiles in inguinal white adipose tissue of lysophosphatidic acid receptor 4-KO mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

White adipose tissue (WAT) is a highly active metabolic and endocrine organ, and its dysfunction links obesity to a variety of diseases, ranging from type 2 diabetes to cancer. The function of WAT is under the control of multiple cell signaling systems, including that of G protein-coupled receptors (GPCRs). Gs- and Gi-coupled receptors have been reported to regulate lipolysis, and Gq-coupled receptors stimulate glucose uptake in adipocytes. However, the roles of G12/13-coupled receptors in WAT are totally unknown. Here we show that lysophosphatidic acid receptor 4 (LPA4), an adipose cluster GPCR, selectively activates G12/13 proteins in adipocytes, and limits continuous remodeling and healthy expansion of WAT in mice. Under standard diet conditions, LPA4-knockout mice showed higher expression levels of mitochondrial biogenesis-related genes in WAT, along with higher production of adiponectin than control mice. In vitro studies have consistently demonstrated that the LPA4/Rho/Rho-kinase signaling pathway suppresses mRNA expression of mitochondrial biogenesis-related genes in adipocytes. In a diet-induced obesity model, LPA4-deficient mice showed metabolically healthy obese phenotypes, with continuous WAT expansion, and protection from WAT inflammation, hepatosteatosis, and insulin resistance. Given that GPCRs comprise the most successful class of drug targets, LPA4 would be a promising therapeutic target for obesity-related metabolic disorders.

Publication Title

The Gα12/13-coupled receptor LPA4 limits proper adipose tissue expansion and remodeling in diet-induced obesity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE66130
Gene expression profiles in epididymal white adipose tissue of lysophosphatidic acid receptor 4-KO mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

White adipose tissue (WAT) is a highly active metabolic and endocrine organ, and its dysfunction links obesity to a variety of diseases, ranging from type 2 diabetes to cancer. The function of WAT is under the control of multiple cell signaling systems, including that of G protein-coupled receptors (GPCRs). Gs- and Gi-coupled receptors have been reported to regulate lipolysis, and Gq-coupled receptors stimulate glucose uptake in adipocytes. However, the roles of G12/13-coupled receptors in WAT are totally unknown. Here we show that lysophosphatidic acid receptor 4 (LPA4), an adipose cluster GPCR, selectively activates G12/13 proteins in adipocytes, and limits continuous remodeling and healthy expansion of WAT in mice. Under standard diet conditions, LPA4-knockout mice showed higher expression levels of mitochondrial biogenesis-related genes in WAT, along with higher production of adiponectin than control mice. In vitro studies have consistently demonstrated that the LPA4/Rho/Rho-kinase signaling pathway suppresses mRNA expression of mitochondrial biogenesis-related genes in adipocytes. In a diet-induced obesity model, LPA4-deficient mice showed metabolically healthy obese phenotypes, with continuous WAT expansion, and protection from WAT inflammation, hepatosteatosis, and insulin resistance. Given that GPCRs comprise the most successful class of drug targets, LPA4 would be a promising therapeutic target for obesity-related metabolic disorders.

Publication Title

The Gα12/13-coupled receptor LPA4 limits proper adipose tissue expansion and remodeling in diet-induced obesity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE102079
FABP4 overexpressed in intratumoral hepatic stellate cells within hepatocellular carcinoma with metabolic risk factors (part 1)
  • organism-icon Homo sapiens
  • sample-icon 257 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BACKGROUND & AIMS: Metabolic syndrome is a newly identified risk factor for hepatocellular carcinoma (HCC), however the molecular mechanisms still remain unclear. To elucidate this issue, cross-species analysis was performed to compare gene expression patterns of HCC from human patients and melanocortin 4 receptor-knockout (MC4R-KO) mice, developing HCC with obesity, insulin resistance and dyslipidemia. METHODS: Unsupervised hierarchical clustering and principle component analysis of 746 differentially expressed orthologous genes classified HCC of 152 human patients and MC4R-KO mice into two distinct subgroups, one of which included all the mouse HCC was etiologically associated with metabolic risk factors, such as obesity and diabetes. A specific biomarker was identified by the integrative analysis, and validated with in vitro studies and other cohort patients. RESULTS: As commonly overexpressed in human and mouse metabolic disease-associated HCC, FABP4 was remarkably enriched in intratumoral activated hepatic stellate cells (HSCs). Then, we established subclones constitutively expressing FABP4 from a human HSC cell line, in which the expression levels of inflammatory chemokines including IL1A and IL6 was upregulated through NF-B nuclear translocation. An immunohistochemical validation study of other 106 human HCC samples indicated that FABP4-positive HSCs were distributed in tumors of 38 cases, and that the FABP4-high group was composed of patients with non-viral and non-alcoholic HCC (P=0.027) and with multiple metabolic risk factors (P<0.001) compared with the FABP4-low. CONCLUSIONS: FABP4 overexpression in HSCs could contribute to hepatocellular carcinogenesis in patients with metabolic risk factors via modulation of inflammatory pathway, and is a promising novel biomarker as well as a potential therapeutic target for this subtype of HCC.

Publication Title

Fatty Acid Binding Protein 4 (FABP4) Overexpression in Intratumoral Hepatic Stellate Cells within Hepatocellular Carcinoma with Metabolic Risk Factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE102080
FABP4 overexpressed in intratumoral hepatic stellate cells within hepatocellular carcinoma with metabolic risk factors (part 2)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BACKGROUND & AIMS: Metabolic syndrome is a newly identified risk factor for hepatocellular carcinoma (HCC), however the molecular mechanisms still remain unclear. To elucidate this issue, cross-species analysis was performed to compare gene expression patterns of HCC from human patients and melanocortin 4 receptor-knockout (MC4R-KO) mice, developing HCC with obesity, insulin resistance and dyslipidemia. METHODS: Unsupervised hierarchical clustering and principle component analysis of 746 differentially expressed orthologous genes classified HCC of 152 human patients and MC4R-KO mice into two distinct subgroups, one of which included all the mouse HCC was etiologically associated with metabolic risk factors, such as obesity and diabetes. A specific biomarker was identified by the integrative analysis, and validated with in vitro studies and other cohort patients. RESULTS: As commonly overexpressed in human and mouse metabolic disease-associated HCC, FABP4 was remarkably enriched in intratumoral activated hepatic stellate cells (HSCs). Then, we established subclones constitutively expressing FABP4 from a human HSC cell line, in which the expression levels of inflammatory chemokines including IL1A and IL6 was upregulated through NF-B nuclear translocation. An immunohistochemical validation study of other 106 human HCC samples indicated that FABP4-positive HSCs were distributed in tumors of 38 cases, and that the FABP4-high group was composed of patients with non-viral and non-alcoholic HCC (P=0.027) and with multiple metabolic risk factors (P<0.001) compared with the FABP4-low. CONCLUSIONS: FABP4 overexpression in HSCs could contribute to hepatocellular carcinogenesis in patients with metabolic risk factors via modulation of inflammatory pathway, and is a promising novel biomarker as well as a potential therapeutic target for this subtype of HCC.

Publication Title

Fatty Acid Binding Protein 4 (FABP4) Overexpression in Intratumoral Hepatic Stellate Cells within Hepatocellular Carcinoma with Metabolic Risk Factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94589
Gene Expression In Drosophila Hearts Harboring Ion Channel Mutations
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations

Publication Title

Age-dependent electrical and morphological remodeling of the Drosophila heart caused by hERG/seizure mutations.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11965
Contribution of HSD17B12 for estradiol biosynthesis in human breast cancer
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

17beta-hydroxysteroid dehydrogenase type12 (HSD17B12) has been demonstrated to be involved in regulation of in situ biosynthesis of estradiol (E2). HSD17B12 expression was reported in breast carcinomas but its functions have remained unknown. Therefore, we examined the correlation between mRNA expression profiles determined by microarray analysis and tissue E2 concentrations obtained from 16 postmenopausal breast carcinoma cases in order to analyze an association of the enzyme expression with intratumoral E2 production. No significant correlations were detected between intratumoral HSD17B12expression and E2 concentration.These findings suggest that the presence of HSD17B12 in carcinoma cells contributes to a development of human breast carcinoma via a pathway other than in situ E2 biosynthesis.

Publication Title

17Beta-hydroxysteroid dehydrogenase type 12 in human breast carcinoma: a prognostic factor via potential regulation of fatty acid synthesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact