refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE57947
Identification of genes associated with breast cancer micrometastatic disease in bone marrow using a Patient Derived Xenograft mouse model
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study, using a Patient Derived Xenograft (PDX) system established by transplanting primary tumors from pre-metastatic breast cancer patients we demonstrate that development of distant organ metastases correlates with the presence of Bone Marrow Disseminated Tumor Cells (BM DTCs) in the PDX mice. Comparative gene expression analysis of bone marrow (BM) from tumor bearing PDX mice which developed metastatic disease was carried out with BM from non-tumor bearing controls.

Publication Title

Identifying biomarkers of breast cancer micrometastatic disease in bone marrow using a patient-derived xenograft mouse model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19697
An expression profile that predicts the therapeutic response of the basal-like breast cancer to neoadjuvant chemotherapy
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A gene expression signature characterizes expression data from breast cancer samples of patients with pathological complete response (pCR) or residual disease (RD) following the neoadjuvant trial.

Publication Title

A gene expression signature that predicts the therapeutic response of the basal-like breast cancer to neoadjuvant chemotherapy.

Sample Metadata Fields

Sex, Disease stage, Race

View Samples
accession-icon SRP108020
Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The myeloma bone marrow microenvironment promotes proliferation of malignant plasma cells and resistance to therapy. Interleukin-6 (IL-6) and downstream JAK/STAT signaling are thought to be central components of these microenvironment-induced phenotypes. In a prior drug repurposing screen, we identified tofacitinib, a pan-JAK inhibitor FDA-approved for rheumatoid arthritis, as an agent that may reverse the tumor-stimulating effects of bone marrow mesenchymal stromal cells. Here, we validated both in vitro, in stromal-responsive human myeloma cell lines, and in vivo, in orthotopic disseminated murine xenograft models of myeloma, that tofacitinib showed both single-agent and combination therapeutic efficacy in myeloma models. Surprisingly, we found that ruxolitinib, an FDA-approved agent targeting JAK1 and JAK2, did not lead to the same anti-myeloma effects. Combination with a novel irreversible JAK3-selective inhibitor also did not enhance ruxolitinib effects. RNA-seq and unbiased phosphoproteomics revealed that marrow stromal cells stimulate a JAK/STAT-mediated proliferative program in myeloma plasma cells, and tofacitinib reversed the large majority of these pro-growth signals. Taken together, our results suggest that tofacitinib specifically reverses the growth-promoting effects of the tumor microenvironment through blocking an IL-6-mediated signaling axis. As tofacitinib is already FDA-approved, these results can be rapidly translated into potential clinical benefits for myeloma patients. Overall design: Single-end 50 bp RNA-seq of MM.1S myeloma cell line either grown alone in monoculture, MM.1S isolated after 24 hr co-culture with immortalized HS5 bone marrow stromal cells, or HS5 bone marrow stromal cells grown alone

Publication Title

Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE71258
Identification of genes associated with breast cancer micrometastatic disease in bone marrow disseminated tumor cells (DTCs)
  • organism-icon Homo sapiens
  • sample-icon 126 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, we assess the effect of zoledronic acid on clearance of disseminated tumour cells (DTCs) from the bone marrow in women undergoing neoadjuvant chemotherapy for breast cancer

Publication Title

CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact